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O. Introduction and Summary: The basic response 
error model developed by the U.S. Bureau of the 
Census [5] has been generalized to the multi- 
variate case by Koch [4]. The possibilities of 
application of the model to complex sample de- 
signs and to complex estimators are, however, 
limited by the requirement that all components 
of the vector random variable are measured for 
the same sample. This is not necessarily the 

case for many applications, such as difference, 
ratio or regression estimation, or panel -type 
sample designs, where component estimators may 
be based on different samples (e.g. sub- samples, 
partially matched samples, etc.). In the fol- 
lowing, the basic multivariate response error 
model is extended to cover the case where each 
component of the vector variable is measured in 
a possibly different sample, all selected from 

the same finite population. The extended model 
is then applied to difference and ratio estima- 
tion in different response error structure situ- 
ations and to the case of sampling on two occa- 
sions. 

1. The Model: The formulation of the model 
follows that of Koch [4]. For each unit in the 
population, 1 =1 N , let there be defined a 
p- component vector random variable, Xit,by: 

, 
where t indexes the 

sequence of repeated trials. 

Any given sample is defined by the indicator 
random variable: 

1 : if unit i is in the sample 
= for the j -th component 

0 : otherwise. 

So as to simplify the presentation, simple ran- 
dom sampling without replacement will be assumed 
for each of the component samples. Thus, if 

is the sample size for component j , then: 

E {Uij) 
/N and: E 1) -1)], 

(ifi') The relationship between the 
samples is defined by: 

(j) (j') (j) (j') 
i 
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where it is assumed that the expectation depends 
only on whether i =i' and not on the specific 
values of i and i' If we define: 

/(N vii,) , (where and it is 

assumed for the time being that (0) , then 

it is easy to see that: 

-1) 

-1) 

The statistic considered will be the sample mean: 

..... where: 

. as an estimate of the popula- 
j N 

tion mean: ' =(1/N) E where: 
Et 

=1 
is the expected response for the i -th element 
over all trials. It will be assumed that there 
is no response bias, so that: 

=Et Et 
. The variance - 

covariance matrix of yt can be decomposed, as 

usual, as follows: 

=Et{ (it) } - 

Letting and 
N 
E U /n be the sample mean of the expec- 

i=1 
i i 

ted values for the j -th component, this decom- 

position reflects the three sources of variation 

as follows: 

Response Variance: (x - 

Sampling Variance: =Et 

(1) 

Interaction: 

In the 

element of 
decomposing 

2I , where: 
Et } 

following, , the (j,j') 

, will be expressed by further 
each of its components: 

+2 . (2) 

Define the simple response variance as: 

Et 

(1 /N)E1 SRVijf) 
(3) 

and, similarly,the correlated response variance 

as: 

=E 
t it i i t 

1 
-1) ' 



(where the conditional expectations 
fined, since we assumed 

, =P ) =1) and it can 

seen that 

the trivial case =1). 

The response variance component can 
be: 

are well de- 

easily be 

, except in 

be shown to 

(5) 

If we define the simple sampling variance as: 

(6) 

the sampling variance component can be written 

=(1 (7) 

The interaction component, , which 
reflects the inter -relationship of sampling and 
response errors, is non -zero if: 

=Et 
=1) 

If we define simple interaction between response 
and sampling deviations for the same units as: 

=(1 

and: ; (8) 

and define the simple correlated interaction 
between response and sampling deviations for 
different units as: 

E 

and: . (9) 

Then: =(1 

+(njj,- 

Substituting (5), (7) and (10) in (2) we obtain: 

1 +(njj'- 

+(1- +2[ 

+(njj,- , (11) 

where the last two terms drop out if 

) for all (í,i'). It should be 
noted that this expression has the same form as 

that given by Koch [4] for the case where all 
components are measured on the same sample, with 

only the sample size n replaced by n . 

Thus, methods proposed by Chai [2] and 

Bailar and Dalenius [1] to estimate the popula- 

tion parameters on the basis of a single sample 
can be applied. 
For the special case, =0 (jfj') , i.e. 
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non- overlapping samples for the j -th and j' -th 
component, the resulting modification of the de- 
composition, (for j #j'), is: 

) - 

(12) 
which is the limit of (11) as 1 /njj, goes to 

zero. It should be noted that is 
independent of sample size, in this case. 

2. Application to Complex Estimators: The above 
model can easily be applied to a variety of samp- 
ling designs with respect to the relationship be- 
tween samples for different components. In the 
following, the application of the extended model 
to complex estimators is considered. For the 
sake of algebraic simplicity, we shall assume no 
interaction between samplintj response devia- 
tions, in the sense that =Yi , for all 

=1 ..... N and for all j,j' =1,...,p . The 
result.s can easily oe extended to the case of non- 
zero interactions. The variance of a linear 
combination of the sample means: 

j) , as an estimate of ) 

will be: 

var ) (13) 

Similarly the variance of an analytical function 

of the sample means can be 

approximated by the appropriate Taylor expansion. 

We shall consider two variables, X and Y, 

with observable values at the t -th trial for 
the i -th unit 

Xit, Yit 
. Define 

Xi =Et(Xit); 
Yi 

and let 3(1 /N)EiXi 

=(1/N)EiYi , =(1/N)EiXit and =(1 /N)EiYit 
' 

be the population means of the expected values and 
of the values for the t -th trial respectively. 
Let: 

=(1/N)EiEt(Xit -Xi)Y 
it 

Yi} and similarly 

V and 
xx 

C N( - 1) '(Xit Xi)(Yi,t Y ) 

and similarly C and C ; 

N11 
Ei(Xi ) ; and similarly S 

and . 

Consider a single simple random sample with- 
out replacement of size n , selected from the 
population of N elements and defined by the 
indicator random variables Ui (i =1,2,...,N) . 

Let =(1 /n)EiUiXit =(1 /n)EiUiYit 
; 

/n)EiUiXi ; and q(1 /n)EiUiYi be the sample 

means for the t -th trial and for the expected 
values, respectively. 



In the following Y will be the variable 
for which an estimate of the population mean of 
expected values, , is required. Measurements 
of Y are available only for the sample elements 
at a given trial, t , so that only yt is 

known. X will be an auxiliary variable for 
which measurements are available for the whole 
population, in one of the following alternative 
ways: 

(a) X is measured at the t -th trial for the 
population and for the sample. In thiá 
case and Xt are known but not x or 

. This would be the most usual case in 
practice, Kiving_rise to the difference 
estimate: ; or to the 

ratio estimate: YRtl 
(b) X is measured at the t -th trial for the 

sample, so that is known, and the 

population mean of the expected values, , 
is known (or alternatively has no 

response error), but , the sample mean of 
expected values, is not known. This case 
would be rather unusual in practice but may 
arise if errorless measurements are availa- 
ble for the whole population (or only for 
its mean) but there is a practical diffi- 
culty in matching the sample back, to ob- 
tain the values of Xi for the sample 

elements. _The difference estimate for this 
case is: -X); and the ratio 

estimate is: . 

(c) The expected values of X are known for the 
whole population and for the sample (or X 
is assumed to be measured without response 
error), so that x and X are known. In 

this case the difference estimate is 

YDt3 ; and the ratio estimate is: 

. 

The variances of all these estimates can 
be obtained from (11) and (13), by considering 
the vector variables: 

(Yit'Xit'X it)' 

(Yit'Xit'Xi) or (Yit,Xi,Xi) 
for (a), (b) 

or (c), respectively, with sample sizes: 
and n3 N and values of 

12 -n22 
n and 

n13 n23 N 

The variance of the difference estimates is 
obtained by applying (13) with R(1,k, -k). 
The common component of the variances of the 
three estimates which is independent of k is 

the variance of the sample mean: 

n (14) 

If we define the intra -trial correlation as: 

(j CROY) 
SRV() (if SSRV 00) ; so that: 

; Cxy/Vxy ; óyyCyy /Vyy , then 
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minimal variances of the difference estimates are: 

V1mink[n var(yDtpn var(Yt) 

]2 

(1-f) V(1-8 )+S 

V2-mink[n 

[Vxy{1+(n-1)6xy}+(l-f)Sxy]2 

1+(n-1J<dxx}+(1-f ) 

(15) 

(16) 

V3-mink[n var(YDt3)]n var(Yt)-(1-f)SXy/Sxx (17) 

where f-n/N 

The last terms of the right hand sides of (15)- 
(17) represent the possible gains over the sample 
mean from the use of the three difference esti- 
mates. If we assume >0 , then for 

n sufficiently large we will have: V2 <V1 and 

V2 <V3 , so that the greatest gain could be made 

by using yDt2 , (i.e. using the trial sample 

mean , and the population expected mean ), 

even if errorless (i.e. expected) values are 
available both for the sample and for the 
population. 

If, however, the response correlations, 

and Cxy , are small, relative to the response 

variances (V and Cxx) , and n is not too 

large then 
YDt3 

may well have the smallest 

variance of the three estimates. 
The variance of the ratio estimates, 

be approximated by applying (13) with 1(1, -R,R). 
Thus (approximately): 

n var4 Rtl)i var(Yt) 

+(1 -f) {R2 [Vxx (1 -6 ) +S J 

-2R[Vxy(1- +Sxy]) (18) 

n var(YRt2)an 
var( t) 

+R2 1 +(n -1) -f) Sxx} 

-2R +(n- 1)8 +(1 -f)S } ; (19) 

n var(7Rt3)an var(yt) +(1- f)[R2Sxx 2RSxy] . (20) 

The conditions under which the ratio esti- 
mates are better than the sample mean, i.e. 
var(yRt) <var(yt) , are then: 

Vxy(1- 
R<2 

V (1 -6 ) +S ' 
for 

V[1+(n-1)6 xx J+(1-f)S 

R<2 V [1+(n-1)dJ+(1-f)S 
for YRt2 



S 

, for yRt3 
xx 

(21) 

If response correlations are small, relative to 

the correlations between expected values, the 

conditions (21) for 
YRtl 

and may be 

more stringent than the condition for and 

in particular if: 

V (1-6 ) 

< S 
for YRt2 and if: 

xx xx xx 

Vxy[1+(n-1)dxy] 

Vxx[1+(n-1)d]c 
for YRtl . (22) 

The last relationship would always hold if 

6 <6 for large enough n . 

xx 

Comparing and 
YRt2 , 

we have 

var(yRt2) >var(YRtl) 
if: 

V (1+(N -1) E (Y 

R)2 2 t t 
. (23) 

xx[1 
+(N- 1)dxx Et X)2} 

Thus, if the correlation between the trial 

means, and , is small, the ratio esti- 

mator 
YRt2 

would be preferred to i.e. 

the trial population, , should be used ra- 

ther than the errorless expected population mean 

X , for blowing -up the trial sample ratio, 

even if is known. 

3. Application to Sampling on Two Occasions: 

Let samples of the same sizes, n , be selected 

on each of two occasions such that m( <n) ele- 

ments are matched and measured on both occasions 

and u( n -m) are unmatched., Let Y be the 

variable for the second (current) occasion and 

X for the first and consider the unbiased esti- 

mate from the t -th trial for : 

, (24) 

where 
' 

are the sample means for the 

matched part, yut ut 
are the sample means 

for the unmatced parts and a, b are any 

constants. Set: 

with: ; ; 

0 
; 

m/N 
; 

am 

If we define 

T2 V -C +S ; T 
2 
201 -C +S ; and 

y yy x xx xx xx 

/(TxTy) 

then the minimal variance of (24) is: 

T2 

min Cy-S yy/N+ n (l+ ) (25) 

a,b,U 
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where U -u /n . 

The variance of the simple sample estimate 

for the second occasion, in: 

/n (26) 

The factor 2(1 +u) in (25) represents 

the reduction in the third term of the variance 
of the simple estimate, (26), obtained by using 
matched samples and is the same in form as ob- 
tained in classical sampling theory without re- 
sponse errors (e.g. in Cochran [3]). However, 
if the correlated response error is large 

relative to T2 , the matching will not signifi- 
cantly reduce The total variance. 
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